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A theory of an elastomer layer of linear viscoelasticity in the case of static and dynamic deformations is constructed. Some exact 
solutions of the problems of a plane layer are considered and their relation to layer theory is pointed out. The structure of the 
exact solution proves that it is possible to split the strained state into a fundamental state and a boundary layer. The equations 
of the layer give the fundamental state. 

1. We will assume that the strain of a material is described by the Boltzmann-Volterra law of hereditary 
elasticity [1] 

I e), oij = Geij (~i i  = Re + 2G(ei i  - -~ 

/C = K0(1- g*), G = G 0 ( I - G ' )  

(1.1) 

t 

(K* ,G ' )  u(t) = ~ [K'( t - 'c) ,  G ' ( t -  x)] u(x) dx (1.2) 
- o o  

where K0 and Go are the instantaneous moduli of elasticity, and K', G" are the kernels of the bulk and 
shear relaxation. The material is assumed to be non-uniform. The lower limit can be taken to be zero 
if u = 0 when x < 0. 

The hereditary properties of elastomers (creep and relaxation) depend very much on the tempera- 
ture. The time and temperature dependences are interrelated [1, 2]. At a variable temperature the 
behaviour of the material can be described by the same relations as for constant temperature, but with 
a changed time scale. The reduced time d~ = a(T) dt is introduced into (1.1) and (1.2) instead oft. The 
function a(T) is usually taken in the form lg a(T) = --CI(T - To)/(C2 + T - To), where C1 and C2 are 
constants of the material [2], and To and T are the initial and current temperature. 

The fact that there is a temperature-time analogy enables prolonged tests to be carried out on a 
material [or creep and relaxation under the usual conditions to be replaced by short-term tests at an 
increased temperature. 

The Volterra integral operators (1.2) are bounded and difference operators, and they describe the 
behaviour of materials whose properties do not change with time. For elastomers, the mechanism of 
hereditary strain is distinct in the regions of the highly elastic and glass-like states and cannot be described 
by (1.1) and (1.2) with difference kernels over the whole range of temperature variation. The 
instantaneous moduli are obtained independently of the current temperature. This limits the range of 
application of the viscoelasticity law (1.1), (1.2) and the temperature-time superposition principle. No 
acceptable theory exists at present which reflects the change in the moduli with temperature on trans- 
ferring from the rubber-like to the glass-like state. Empirical formulae do exist, however, one of which 
is given in [3]: E(~) = E** + (Ec - E®)/(1 + ~/tR) n, where Ec and E., are the short-term (at the vitrification 
temperature) and the long-term moduli, tR is the characteristic relaxation time, and usually n = 0.3. 

2. We will consider static strain. According to the Volterra principle, in order to obtain a solution of 
the viscoelastic problem we can initially construct a solution of the elastic problem and then replace 
the moduli of elasticity by operators in the final formulae. We will use the results of elastic-layer theory 
[4, 5] below. 
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The equations of  elasticity for a thin elastomer layer contain two small parameters: a geometrical 
parameter E = h/R, the ratio of the characteristic dimensions and the physical dimensions, and 1 - 2v 
= G/K, the ratio of the shear modulus and the bulk compression modulus. We will assume that 1 - 2v 

e q, q > 0. Corresponding to three cases of interest for layer theory, namely, q = 1, 2 and 3, a layer 
will be called very thin, thin or of medium thickness. If q is considerably less than unity, the model of 
an infinitely extended layer is applicable; if q is considerably greater than three, the model of an 
incompressible material is applicable. The equations of layer theory in the zeroth approximation are 
identical in all three cases. To fix our ideas we will henceforth take q = 2. 

We introduce orthogon'al curvilinear coordinates ((x, 13, z) where ((x, 6) ~ S, [ z ] ~< h/2, S is the median 
surface of the layer and h is the thickness. The position of a point is specified by the vector R = r((x, 
I~) + z n ,  n _l_ S .  

In the zeroth approximation in e we obtain [5] 

] o. o (2.1) 

(2.2) W + -- W -  
h2 divs VKe _ 12e = - 12 6divs(U + + U- )  

G h 

where U is the displacement vector of  a point, e = div U is the relative increment in the volume, U + 
and U- are the displacements of the faces, and W is the projection of the vector U on to the normal n. 
The operations divs and V are carried out on the median surface S. In (2.1) and (2.2) we assume that 
the moduli of  elasticity K and G are independent of z and ~ = z/h. 

The solution of the boundary-value problems of the layer reduces to integrating F_x]. (2.2) for the 
function e with the boundary condition Ke = p, where p is the pressure. Under  kinematic conditions 
on the faces of  the layer the vectors U + and U- are specified, but under other types of conditions they 
are regarded as unknowns. 

Equations (2.1) and (2.2) give the elastic solution. In order to transfer to the viscoelastic solution we 
have to replace the moduli K and G by operators. 

3. We will obtain the exact solutions of a number of problems of a plane layer with rigid faces. The 
material is assumed to be uniform here. We will use Cartesian coordinates. 

In the problem of the tension--compression and bending of  a layer the boundary conditions on the 
faces z = +_hi2 have the form 

(Ux,U.v)=0, W = + ( a  z -XO)y+YO)x)/2 (3.1) 

where az, o)x, ~ are the relative displacement and rotations. 
We will obtain the solution of the equations of equilibrium in displacements grad e + (1 - 2v) AU = 0 

by the method of homogeneous Papkovich-Lur'ye solutions 

(Ux,Ur) = (p(k,~) ((I)~,(I);.)+(1-442) 8 (1 -2v )  (-°)Y'(°x) (3.2) 

W=W(k ,~ )~Yp+~(W+-W-) ,  h e = 4 ( l - 2 v ) d p c o s k ~ + W + - W  - 

(p = tg ~ k c o s k ~  - 2~sink~, W = c t g ~ k s i n k ~ -  2~cosk~ 

The functions ~(k ,  x, y) and the parameters k are found from the equations 

h2A~ - k2~ = O, (3 - 4v) sink - k = 0 (3.3) 

In (3.2) the summation is carried out over k. 
The boundary conditions for the first equation of (3.3) are found in a special way, in order that the 

displacements (3.2) satisfy the specified static conditions on the side surface of  the layer. 
A consequence of  the low compressibility of the material is the presence of two small roots of the 

second equation of (3.3) k = __.~/(12(1 - 2v)), which correspond to the values of the Papkovich functions 
¢p = -+(1 - 4 ;  2) ~/(3(1 - 2v)), V = -2 ; (1  - 4;2)(1 - 2v). 
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For small roots ~. the function • is constant over the thickness of the layer with an error of 1 - 2v, 
and it then follows from the first equation of  (3.3) and formulae (3.2) that 

h2Ae - 12(1 - 2v) e = - 12(1 - 2v) (W + - W- ) / h (3.4) 

Formulae (3.2) for small ~, and Eq. (3.4) are completely identical with the results of the analogous 
problem of layer theory (2.1), (2.2). 

Equation (3.3) has two small real roots k; the remaining roots are complex and are not small. If the 
layer is thin, the solution will be of the boundary-layer type. Hence, for a thin layer its stress-strain 
state can be split into a fundamental layer, corresponding to small roots ~., and a boundary layer. In 
the zeroth approximation, the boundary layer has no effect on the fundamental slowly varying state. 

In the problem of the shear of a layer, the boundary conditions on the faces have the following form: 
Ux = ---ax/2, Uy = -+at/2, W =0, where ax and ay are the relative displacements of  the base. The solution 
of the boundary-value problem is as follows: 

(U x , Uy ) = h~,-l~(~,, ~) (~'x, t~y ) + ~(ax, ay ) 

W = - ¢p(~,, ~) ~ ,  he = - 4(1 - 2v) tbcosL~ (3.5) 

The function ~ is found from the first equation of (3.3), while the parameter ~. satisfies the equation 
(3 - 4v) sin ~. + ~. = 0. Here all the roots are complex and are not small, and the solution corresponding 
to them will be of the boundary-layer type. The fundamental state is given by the particular solution 
in (3.5), i.e. it is simple shear. 

We presented the solutions of  the problems of elasticity above; for viscoelasticity the parameters 
v and k must be replaced by the operators ~ = v0(1 + v*), k = ~0(1 - ~.*). The limits of variation 
of the quantity ~-  1 (the convolution of  the operator ~ with unity [1]) are small: v0 ~< v .  1 < 0.5, since 
the initial value of Poisson's ratio v0 is close to 0.5. 

4. We will now consider the dynamic problem. The boundary conditions on the surfaces of  the layer 
are specified to be of  the same type as in the static problem. We are also given the initial conditions--- 
the displacements and velocities of  the points. 

In addition to the small parameters mentioned above, the equations of  motion will also contain 
parameters of  the frequency of  the velocity (or oscillations), which may vary over a wide range. We will 
say more below about the limitations on the value of the frequency used in deriving the equations of  
the layer. 

The procedure for constructing the dynamic theory of  the layer using the asymptotic method is well 
known [6]. We will use this method for the case of viscoelasticity. The equations of  motion, written in 
displacements, in the zeroth approximation in e = h/R (as previously, we assume 1 - 2v - e2), have 
the form 

- -  p • 

m -l (Ke)'a + (GU z)z - OU~'= 0 

B-l(f~e)~ " "" (4.1) +(GV~)~ -15V,"--0, (Re)~ = 0  

where A and B are the Lam6 parameters of  the system of coordinates ( ~  [i) on S, and ~ is the density 
operator, similar to (1.2). The required functions are the variables U, Vand Wand the relative increment 
of  the volume. 

In the zeroth approximation in e we have 

e = W z' + [(BU)~ + (AV)~ ] I AB (4.2) 

For Eqs (4.1) and (4.2) on the faces of the layer z = +.h/2 the previous conditions remain the same, 
but on the side surface we can specify only one asymptotically principal condition. When t = 0 the 
displacements U and V are given as well as their velocities as a function of the variable z. 

For unsteady loading we can apply a Laplace transformation with respect to time to Eqs (4.1) and 
(4.2) and then integrate with respect to the variable z, as in the static problem [4, 5]. Below we will 
consider the problem of the oscillations of  the layer when it is excited harmonically. Its elastic solution 
is given in [6]. 

Periodic stresses correspond to time-periodic strains in (1.1) and (1.2). If the lower limit in (1.2) is 
taken to be zero, the stresses become non-periodic. However, for kernels which satisfy the decaying 
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memory condition, which disturb the periodicity, the integral term approaches zero as t increases. 
We will introduce the complex displacements 

(U, V, W)  = (U , V,  W )  e i°~t (4.3) 

The strains e# and the functions e have the same time-dependence. The formulae for calculating 
the stresses are as follows [1]: 

( 1  / 
Oii = K e + 2 G  e i i - - ~ e  , Oij =Geq 

K =  K0[1- i K'(x)e-i'°Xdx], G'= G011- i G'(x)e-i°~Xdx] 

(4.4) 

where K, = K1 + iK2, G = G1 4- iG 2 are complex moduli of elasticity which depend on the frequency 
CO. 

The quantities K1 and G1 represent the elastic deformation energy, while K2 and G2 represent the 
dissipated energy. The mechanical loss tangents for bulk and shear strains can be calculated from the 
equations tg 9K = K21K1, tg cpc = G~JG1. 

The approximate formulae for the stresses have the form 

t P 

Oii ----- O ----- g e ,  Oi3 = "GU z , 023 = G V z, O12 = 0 

Using (4.3) and (4.4) we can convert Eqs (4.1) to the form 

a-I(K,e)~ + -- , , (GUz) z +'~¢02U = 0 

B -n(ge)~ +(GVz') ~ +~co2V = 0, (Ke) z = 0 (4.5) 

Suppose the moduli K" and G are independent of z. We integrate Eqs (4.5) and (4.2) by the method 
of separation of variables. As a result we obtain the complex displacements and an equation for the 
function e 

U =a+U + +a_U- -bo(Ke)"  a / (Apo~2), V =a+V + +a_V- -bo(-Ke) ~ / (B~o~ 2) 

1 _~ W - +  divs (cVKe)+ divs[(c+d )U + + ( c - d ) U - ]  (4.6) w-- +4 w ÷+  co2 

1 divs[(2f _ 1) VK, e ] -  e = - h (W+ - W-)  - div s f l U  + + U-); e[~ s = 0 (4.7) 
pco 2 

s i n k ( ~ + ~ )  b o =1 eosk~ 
at  = sink ' e o s ~ k  

2 k sin k~ k k cos k~ 
c = ; - ~ t g - ~ - k c o s ~ k ,  d =  c t g ~ -  ksinJ6k 

f =~-tg-~, k=ho~ 

where ~ is the complex density and k is a complex parameter. 
If we assume that all the functions and parameters in (4.6) and (4.7) are real, we obtain the relations 

of the dynamic theory of an elastic layer [6]. However, there is no complete analogy between the 
viscoelastic and the elastic problems since there is a phase shift between the oscillation of the strains 
and the stresses. 

Equations (4.1) describe shear waves propagating in the surfaces z = const. For an elastomer the 
ratio of the velocities of transverse and longitudinal waves is small (of the order of ~/(1 - 2v)). The time 
taken for a longitudinal wave to traverse the region S is of the same order as the time taken for the 
transverse wave to traverse the thickness of the layer. These wave processes do not occur in Eqs (4.1). 

When deriving the equations of the layer we assumed that k is of the order of unity. When k = ~ the 
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displacements (4.6) become infinite and the coefficient of the leading derivatives in Eq. (4.7) vanish. 
Hence, the limit of  applicability of  the theory of the layer with respect to frequency will be taken as 
k < x. The frequency to = rda/h corresponding to k = it will be the lowest natural frequency of oscillations 
of  the elastic layer (b is the velocity of  shear waves). The dynamic equations (4.6) and (4.7) reduce to 
the equations of the static problem (2.1), (2.2) as to --~ 0. 

We will calculate the irreversible part of  the work of  deformation. We must use real functions here. 
We will put 

(U, V, W) = (V I, V i, W l ) sintot + (U2, V2, W 2 ) costot 

Using (1.1) and (1.2) we obtain the stresses 

(~ii=[Klel-K2e2+2G1(e)i-3el]-2G2(e2-3e2]]sinfot+ 

(~O = ( G, eb - G2e~ ) sintot + ( G,e 2 + G2e ~ ) costot 

The specific work of  deformation in a time t is equal to 
t t 

A = ~ (ffl lell + '"  +t~23e23) dt ~- ~ (oh "1"~13ej 3 + ff23e23 ) dt = 
0 0 

= 1 (oe + ~13ei3 + 623e23)1~ + Dt 

O=~to[K2(e  ? +e~)+G2(U,;2z +V,2 +, , ,2  + V~2z)] 
I .Z V 2 , Z  , 

The first term is a periodic function of  time and is the reversible part of  the work, the second term 
is proportional to time and is the part of  the work which is dissipated, andD is the value of  the irreversible 
part of the work per unit time, which is called the dissipation power. The expression for D can be used 
as a function of  the heat sources in the heat-conduction equation when solving the problem of the 
dissipative heating up of  an elastomer layer. 

5. We will consider the exact solutions of  some problems of viscoelasticity when a plane layer is excited 
harmonically. The side surface is free, and the material is homogeneous. The equations and their 
solutions are written below in complex form. We will seek a solution of the equations of motion 

~'2 [grade + (1 - 2~) AU] + (1 - 2~) o2U = 0 • (5.1) 

The torsion era ring layer. We will use cylindrical coordinates. The boundary conditions on the faces 
z = +_-h/2: Ur = W = 0, U,  = -+rt~2, where toz is the angle of  relative rotation of the surfaces. The 
solution of the problem is U~ = 1/2rohsin k~sin 1/2k, k = hto/b. The displacements Ur and W and the 
function e are equal to zero. 

Shear era layer. The boundary conditions on the faces are similar to those in the static problem. We 
will write the solution of  Eqs (5.1) in the form 

sink~ _ k I 
(Ux'UY)= V ( ~ x ' ~ ) +  2sin~2k (ax'aY)' W - - - ~  

tp~ (5.2) 

sin~kl sink2~ tp = cOSkl~- c°s~k2C°s~kl cosk2~ , q/= sinkl~ sin~k2 

k 2 = h2to 2 / ~2, kl 2 = ~,2 + h2t02 / if2, k 2 = ~2 + h2to 2 / ~-2 

where ~ and b are the complex velocities of  the longitudinal and transverse waves. 
The functions ~ are solutions of  Eqs (3.3), while the characteristic numbers 7t are found from the 

equation 

L 2 tg~k~ = klk 2 tg~k 2 (5.3) 
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In (5.2) we have assumed summation over ~,. 

Theproblem of  tension--compression and bending of  a layer Conditions of the same type as in the static 
problem (3.1) are specified on the faces z = +.h/2. From Eq. (5.1) using the method of homogeneous 
solutions, we obtain 

h hiP° (toy,-tox (5.4) 
(U x , Uy ) = 2~ tP(dPx' dpy) + 2k o sin~ k° ) 

W -  k I (pO+ sink°~ 
- - - ~ "  2 sin~k o ( W + - W - )  

where k ° and 90 are the values of kl and 9 when ~. = 0. 
The functions ~ are the solutions of Eqs (3.3), while ~, are the roots of the equation which differs 

from (5.3) by the replacement k 1 ~ k2. 
In view of the smallness of the ratio of the velocities of the shear and bulk strains this equation has 

small roots 

~2 = (1 - 2~) k z / (2k -~ tg~k  - 1), k = hto / 

The results of layer theory (4.6) and the accurate solution for small ~. are identical with an error of 
1 - 2 v .  

Solutions of elastic problems can be obtained from (5.2) and (5.4) if the elasticity parameters are 
assumed to be real. The values of the parameter k 2 ---> 12(1 - 2v) as to ~ 0. 

6. We will consider two problems of elasticity of the harmonic oscillations of a cylindrical hinge which 
illustrate the possibilities of dynamic layer theory. Exact and approximate solutions are obtained for 
these problems using layer theory, and the results are compared. 

The torsion o f  a cylindrical hinge (plane strain). Suppose rl and re are the inner and outer radii and h 
is the thickness of the layer. The boundary conditions on the faces are as follows: when r = rl, U~ = 
rl0- and when r = r2, U~ = r20 +, where U~ and 0 are the circumferential displacement and the angle 
of rotation (amplitude values of the functions are employed). The solution of the plane elasticity problem 
has the form 

O= ~tob-I(AlJo + A2No), U~ = AIJI + A2NI 

where J0, No, ./1 and N1 are Bessel and Hankel functions of argument r o ~  -1. 
Determining the constants A1 and A2 from the boundary conditions and calculating the torque we 

obtain the stiffness relations 

M + = d, 10 + + dl20-, M-  = d210 + + d220- 

We will not derive the exact values of the dynamic stiffness coefficients, but layer theory gives 

d l l =  d22 = 21tGR3h-ikctgk, dl2 = d2! = - 2rtGR3h-lkl sink 

where R is the mean radius and k = htob -1. 

We calculated the stiffnesses for different frequencies using the exact and approximate formulae for a layer with 
2 2 the following parameters: rl = 49.5 cm, r2 = 50.5 cm, h = 1 era, G = 10 kg/cm, K = 25 x 103 kg/cm and p = 

1 g/cm 3. The velocities of transverse and longitudinal waves were b - 3.13 x 103 cm/s and a = 1.56 x 103 em/s. 
The frequency too = xb/h = 9850 rad/s, which is the lowest natural frequency of oscillations, corresponds to the 

limit of applicability of layer theory. For frequencies to < to0 the agreement between the dynamic stiffnesses using 
the exact and approximate solutions is completely satisfactory (at a frequency to = 9000 rad/s the error is less than 
10%). 

Radial shear o f  a cylindrical hinge. The boundary conditions on the faces are as follows: for r = rl, 
Ur = a~ cos tp, U~ = -a~ sin q~ and for r = re, U, = a~cos 9, U~ = -a+sin tp; (r, ~p) are polar coordinates. 
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The exact solution of the plane problem for amplitude values of the functions has the form 

e= AiJl(a)+ A2Nl(a), O= BIJm(~)+ BeNI(~) 

r , r r.~ r , .  r t o  r t o  
Ur = - -~ e a + "~r  O, U~ = - a2  e -  ~ Oi3, a=--,a ~=--b 

The dynamic stiffness relations are as follows: 

Fx 
~ + _ + 

- d I lax + dl2a  x , F x- = d21a x + d22ax 

In view of their complexity we will not give the exact values of the dynamic stiffnesses, but for layer 
theory these relations have the form 

F +=-F x=ItKR I--~(2f-l) I+ (2f-l) ax -aT' 
1- v k 2 h 

For a layer with the above parameters we calculated the dynamic stiffnesses, the relative increment 
in the volume e and the angle of rotation 0 for different frequencies to. The agreement with the accurate 
solution was very good up to the critical frequencies too. We confirmed that the distribution of the function 
e was close to constant over the thickness of the layer, and also the law of the distribution of the angle 
of rotation 0 given by layer theory. 

The problems considered differ in the nature of the strain in the layer: in the first there were only 
shear strains, while in the second there were both shear and bulk strains. An analysis of the problems 
confirms the correctness of the hypotheses used in deriving the equations of the layer and the estimate 
of the frequency limits of its applicability. It follows from the numerical results that one cannot replace 
the dynamic stiffnesses by the static stiffnesses as is often done for elastomer shock absorbers. 

The simplicity with which solutions of the boundary-value problems are obtained using layer theory 
should be noted. The solutions of similar viscoelastic problems can be obtained from the elastic ones 
if we assume that the moduli of elasticity and the other parameters are complex. 

7. Thus, we have obtained the dynamic equations of a curvilinear layer of non-uniform elastomer 
material for the problems of elasticity and viscoelasticity. In the case of plane-layer problems we have 
shown their connection with the exact solutions and we have established the physical basis. By setting 
up a layer theory we have been able to reduce the dimensions of the boundary-value problems and to 
eliminate the problems involved in the low compressibility of the material when solving them. The aims 
of setting up a layer theory and its value are similar to the theories of shells of the plates. The latter is 
constructed for static conditions on the faces of the body, while layer theory is set up for kinematic or 
mixed conditions. The two-dimensional equations of these theories differ qualitatively. Whereas in the 
classical theory of shells one must solve eighth-order equations, in layer theory one only needs to solve 
a single second-order equation. 

The main applications of the layer equations are to solve problems of stability and the dynamics of 
multilayer rubber-metal components, which are widely used in technology as elastic hinges, shock 
absorbers, vibration-protection systems, etc. In these structures the deformation of the rubber layers 
is constrained by the boundary conditions on the faces, since the metal layers cannot have large 
deformations, and their bending is limited by the conditions at the bases of the multilayer system. Hence, 
the linear layer theory considered in this paper has some practical value. It is extremely important to 
set up a non-linear theory. 

Special investigations are also required of the following problems of the dynamic theory of a layer 
and structures: the frequency limits of applicability of layer theory, the roots Z of the characteristic 
equations at different frequencies, an analysis of the natural and forced oscillations of the layer and of 
structures, the motion of a mass on a multilayer rubber-metal shock absorber, etc. 

Similar problems of the dynamic theory of plates were considered in [7], where a rigorous solution 
was obtained of the dynamic problem of elasticity, the equations of the oscillations of thin plates were 
established, and the limits of their applicability were determined. It is interesting that the limits of 
applicability of the dynamic equations of a layer and a plate turn out to be practically the same (e = 
h / R  < 1, to < r,,b/h ). 

This work was carded out with financial support from the Russian Fund for Fundamental Research 
and from the programmes of the State Committee of the Russian Federation on Science and Higher 
Schools of the "University of Russia". 
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